Datawhale干货
【资料图】
作者:平凡@知乎,诺桑比亚大学,在读博士
今天晚上,花了一点儿时间看了两篇文章:
《Emergent Abilities of Large Language Models》[1]
《PROGRESS MEASURES FOR GROKKING VIA MECHANISTIC INTERPRETABILITY》[2]
这两篇讲的都是emergent behavior,即涌现现象。
大规模神经网络下的涌现现象在机器学习中使用大规模神经网络时,由于增加了参数数量、训练数据或训练步骤等因素,出现了定性上的新能力和性质,这些能力和性质在小规模神经网络中往往是不存在的。
第一篇文章举了这个例子,每个图都可以理解为一个任务,横轴是神经网络的规模,而纵轴是准确率,可以理解为模型的性能。
我们拿图一来看,在10的22次方前,这些模型基本上的性能基本上都很稳定在0附近,而在10的22以后,突然在10的24次方上获得了很大的性能提升,在其他的几个任务上都表现出类似的特征。
意想不到的效果第二篇文章更是有趣,我直接把推特一位博主的评论引用在这里:
作者发现,当我们训练用网络计算同余加法 a+b = ? (mod c) 时,网络在某个时间突然获得了 100% 准确率。分析发现,神经网络实际上“顿悟”了使用傅立叶变换来计算同余加法!这个算法可以证明是正确的, 反人类直觉的。
从这俩例子里面我的感受是,只要数据量足够且真实,且模型没有硬错误的前提下,不断的训练说不定真的能够产生一些意想不到的效果。
还有就是我觉得人类现在积累的知识并不少,但是系统的少,零星的多,如果类似ChatGPT这样的大模型可以拿所有的人类已有知识进行不断学习的话,我觉得有很大概率会让它涌现出意想不到的能力。
甚至可能把人类的生产力解放提前很多。
参考
1.https://arxiv.org/pdf/2206.07682.pdf2.https://arxiv.org/pdf/2301.05217.pdf下一篇:最后一页
“谢谢选择我做你的妈妈!” 这封信请18年后查收 扬子晚报讯(通讯员 刘威 记者 朱鼎兆)小时候,母亲常常在家里给我们留字条,
跟新冠病毒“赛跑” 他要让机器人完成核酸检测 经常学生们还不知道我怎么想的时候,我就把自己否定了。工作中需要有自我否定的勇气
助力无接触配送 上海无人车“上岗” 【疫情防控新举措】 科技日报讯 (记者符晓波)眼下,上海疫情蔓延趋势得到有效控制,不少
“态靶辨治” 帮助患者快速转阴 近日,随着患者清零,吉林省长春市北湖奥体中心篮球馆方舱医院等多个方舱陆续“休舱”,各医疗队也
四省市联合医疗队为患者全方位“解忧” 【同心守沪抗疫】 在上海城市足迹馆定点医院的宣传墙上,各类慢性病、基础病的健康宣教手
周美亮: 搜寻野生荞麦的“追种人” ◎本报记者 马爱平 一走进位于国家作物种质库新库内的中国农业科学院作物科学研究所研究员
防晒“神器”竟是珊瑚“杀手” 科技日报北京5月8日电 (实习记者张佳欣)珊瑚礁是地球上生物最丰富、最具经济价值的生态系统之一。
X 关闭
X 关闭